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Oxidative damage to cellular biomolecules, in partic- 
ular DNA, has been proposed to play an important 
role in a number of pathological conditions, includ- 
ing carcinogenesis. A much studied consequence of 
oxygen-centred radical damage to DNA is 8-oxo-2'- 
deoxyguanosine (8-oxodG). Using numerous tech- 
niques, this lesion has been quantified in various 
biological matrices, most notably DNA and urine. Until 
recently, it was understood that urinary 8-oxodG 
derives solely from DNA repair, although the processes 
which may yield the modified deoxynucleoside have 
never been thoroughly discussed. This review suggests 
that nucleotide excision repair and the action of a spe- 
cific endonuclease may, in addition to the nucleotide 
pool, contribute significantly to levels of 8-oxodG in the 
urine. On this basis, urinary 8-oxodG represents an 
important biomarker of generalised, cellular oxidative 
stress. Current data from antioxidant supplementa- 
tion trials are examined and the potential for such com- 
pounds to modulate DNA repair is considered. It is 
stressed that further work is required to link DNA, 
serum and urinary levels of 8-oxodG such that the 
kinetics of formation and clearance may be elucidated, 
facilitating greater understanding of the role played by 
oxidative stress in disease. 

Keywords: Reactive oxygen species, 8-oxo-2'-deoxy- 
guanosine, antioxidants, HPLC-EC, ELISA, urine 

Abbreviations: 8-oxodG, 8-oxo-2~-deoxyguanosine; ROS, 
reactive oxygen species; 8-oxoG, 8-oxoguanine; GC-MS, 
gas chromatography-mass spectrometry; HPLC-EC, 
high performance liquid chromatography with 
electrochemical detection; AP, apurinic-apyrimidinic; 
Fapy, formamidopyrimidine; Ogg, 8-oxoguanine- 
glycosylase; NER, nucleotide excision repair; 
HPLC-MS/MS, high performance liquid chromatography 
with tandem mass spectrometry; TG, thymine glycol; 
8-oxoGuo, 8-oxoguanosine; ELISA, enzyme-linked 
immunosorbant assay; 8-oxoA, 8-oxoadenine 

I N T R O D U C T I O N  

Reactive oxygen species (ROS) possess an impor-  

tant role in living systems through their beneficial 
and detrimental  effects. [1] The ability of ROS to 

structurally modify  cellular components ,  activate 
cy toplasmic /nuclear  signal t ransduct ion path- 

ways,  alter D N A  polymerase  activity, modula te  
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382 M.S. COOKE et al. 

gene expression and protein production [2] has led 
to the implication of their involvement in a variety 
of pathological conditions I3"4~ including inflam- 
mation, ISt carcinogenesis, I6"7] ageing I8"9] and auto- 
immunity. I1°'11] Specific and non-specific 
defences limit the extent to which ROS, either 
generated physiologically from cellular metabolic 
processes or pathologically via toxic insult, may 
affect the cellular environment.Ill1 Nevertheless, a 
proportion of the ROS-generated evade the anti- 
oxidant defences and subsequently interact with 
biomolecules, resulting in a background level of 
damage. More serious for the cell however, is the 
condition of oxidative stress which occurs when 
this prooxidant-antioxidant balance is disturbed, 
in favour of the former. L12J An inevitable conse- 
quence of this is the overwhelming of the anti- 
oxidant defences, by ROS, giving rise to elevated 
levels of damage. 

An important target for ROS within the cell 
is DNA, resulting in a broad range of products 
including base and sugar modifications, covalent 
crosslinks with proteins and single- and double- 
strand breaks. E13] Most attention has focused upon 
ROS-modification of DNA bases, yet with over 
twenty products identified, [141 only a few have 
been investigated in detail. The modified base, 
8-oxoguanine or its deoxynucleoside derivative 
8-oxodG, has been adopted as the target for 
intense investigation (comprehensively reviewed 
in Ref. [15]). The rationale for this has, in part, been 
due to the sensitivity with which it may be mea- 
sured. [161 Reflective of this, the methodologies 
for the measurement of this lesion in DNA are 
numerous and include gas chromatography-mass 
spectrometry (GC-MS), high performance liquid 
chromatography with electrochemical detection 
(HPLC-EC) (both critically reviewed in Ref. [17]), 
32p-postlabelling,~1s] immunodetection ~19"2°1 and 
alkaline elution techniques. [211 Additionally, as 
will be illustrated in this review, 8-oxo-2'-deoxy- 
guananosine (8-oxodG) possesses a documented 
mutagenic potential and has been shown to be a 
relevant marker of oxidative stress. Both the base 
and deoxynucleoside are studied since either 

may be released from DNA depending upon the 
method of hydrolysis, acid for the former and 
enzymic for the latter. ~7~ Furthermore, both 
8-oxoguanine (8-oxoG) and 8-oxodG are present 
in the urine, f22I the measurement of which has 
markedly different implications, which is an aim 
of this review to illustrate. 

Persistence of base modifications may have 
potentially deleterious consequences for the cell, 
for example, mutation. The mutagenic potential 
of 8-oxodG has been demonstrated to be due to 
a loss of base pairing specificity, misreading of 
adjacent pyrimidines, [231 or insertion of cytosine 
or adenine opposite the lesion. [24] Such mutations 
arising from 8-oxoG include GC to AT transver- 
s ions .  [25'261 Mispairing of 8-0xoG with adenine 
appears to be possible due to the predominance of 
the energetically favoured syn conformation of 
8-0xodG, whereas in the ant i - form pairing with 
dC is possible. ~271 It may be that these structural 
alterations are involved in the recognition and 
subsequent repair of this lesion and yet 
8-0xoadenine (8-0xoA), a structurally similar 
lesion, is reported to be at least one order of 
magnitude less mutagenic than 8-0xoG, in Escher- 

ichia coll. [28] It is therefore imperative that 8-oxoG 
does not persist in the DNA; to achieve this there 
exist, broadly speaking, four repair systems 
(Figure 1). 

BASE EXCISION REPAIR 

Base excision repair is largely responsible for the 
removal of non-bulky base adducts, involving 
specialised enzymes which recognise a specific 
repertoire of lesions. In this process, a DNA 
glycosylase removes the modified base leaving 
an apurinic-apyrimidinic (AP) site (AP-deoxy- 
ribose), which is subsequently removed by two 
AP endonucleases which incise 31 (AP lyase) and 
5' (AP hydrolase) to the AP site.  [29] However, some 
repair enzymes have been shown to possess 
both glycosylase and AP lyase activities. The 
resultant gap is then filled by a DNA polymerase. 

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
L

ib
ra

ry
 o

f 
H

ea
lth

 S
ci

-U
ni

v 
of

 I
l o

n 
11

/2
1/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



URINARY 8-HYDROXY-2'-DEOXYGUANOSINE 383 

8oxo G 
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8-oxodGTP hMTH1 8-oxodGMP .~ °~ / CTACO~*~Tc~A ~'hOgg2 

Removal  of 8-oxoG 
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CTGC ATGA 
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(iii) Mismatch  repair I I I I  I I I I I I  . I I I I I I I  I l l l  

(ii) Nucleot ide  excis ion repair 

FIGURE 1 Representation of the four most established repair systems which maintain the integrity of the human genome, 
with respect to 8-oxodG: base excision repair (human homologue of the 8-oxoguanine-glycosylase enzyme: hOggl and hOgg2), 
nucleotide excision repair, mismatch repair (human MutY homologue: hMYH) and prevention of incorporation (human MutT 
homologue: hMTH1). DS and PS refer to daughter and parent strands of DNA respectively. G * indicates 8-oxodG. 

A number of glycosylases for the removal of 
oxidative base damage have been identified, 
which include hydroxymethyluracil DNA glyco- 
sylase, thymine glycol (TG) DNA glycosylase and 
8-oxoG DNA glycosylase. I3°I It has been the 
gIycosyIases associated with the removal of 
8-oxoG which have received most attention. Early 
studies of 8-oxoG DNA glycosylase were in E. coli, 
where it was identified as a formamidopyrimi- 
dine (Fapy) glycosylase (or the Fpg protein from 
the fpg or Mu tM gene) for removing Fapys.[3 t I The 
substrate specificity of Fapy glycosylase has been 
further extended to include singlet oxygen dam- 
aged DNA [32] (predominantly 8-oxoG) and also 
an appreciable amount of 8 - 0 x o A .  [33] The repair 
mechanism of this enzyme has been shown to 
involve two stages, hydrolysis of the N-glycosyl 
bond, resulting in removal of the damaged base, 
followed by an active lyase activity towards the 
apurinic site leaving a strand break. [34] Demon- 
stration that this enzyme can be induced in E. coli 
by conditions of stress, in particular molecular 

oxygen, emphasises the profound protective 
nature of such repair processes, pSI 

van der Kemp et aI. [36] describe the cloning of 
a Saccharomyces cerevisiae gene named OGG1. 
Expression of this OGG1 gene produced a 
glycosylase/lyase enzyme (8-oxoguanine-glyco- 
sylase 1, Oggl) which acts on 8-oxoG when paired 
opposite either cytosine or thymine, but not when 
paired with adenine, t361 The substrate repertoire 
for the Oggl protein was later found to include AP 
sites opposite cytosine.[37] 8-oxoa was also found 
to be removed by Oggl, psi but only when inserted 
opposite cytosine. Girard et al. [37] concluded that 
whilst being functional analogues, differences 
in substrate specificity and catalytic mechanism 
suggested MutM and Oggl proteins are not 
closely related. The genes thought to be the 
human and mouse homologues of OGG1 (hOGG1 
and mOGG1), were recently cloned by several 
groups. [39-43] Expression of hOGG1 suppressed 
endogenous mutation in an E. coli mutant, defi- 
cient in both 8-oxoG glycosylase repair (MutM) 
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384 M.S. COOKE et al. 

and 8-0xoG:A mis-match repair (MutY) [441 and 
was shown to be ubiquitously expressed in a 
variety of human organs. [391 Similarity of sub- 
strate specificity and mechanism between Oggl 
and hOggl suggested hOggl to be indeed the 
mammalian homologue of Oggl. [44"451 Nash 
et al. [46] furthered work in this field of repair by 
reporting a second 8-oxoG glycosylase/lyase in 
yeast (tentatively designated yOgg2) which pos- 
sesses a substrate preference for 8-oxoG paired 
opposite guanine or adenine. [471 Indeed, Hazra 
et al.[48] define hOgg2 in human cells as removing 
8-0xoG when derived from the nucleotide pool 
and misincorporated opposite G or A. 

The importance of the hOgg pathway for 
removal of 8-oxoG from DNA is exemplified in a 
study which reported that inactivation of hOggl 
may occur in some lung and kidney tumours. [49] 
Given the nature of inactivation, the authors spec- 
ulate that OGG1 may represent a new tumour 
suppressor gene. [491 Induction of OGG1 mRNA by 
toxic insult Es°l further supports this importance, 
suggesting the involvement of hOggl, like the 
E. coli MutM protein, [511 in an adaptive response to 
cellular oxidative stress. 

Bessho et al. [52] reported the existence of two 
human 8-oxoG repair enzymes, one being 8-oxoG 
glycosylase (which in contrast to MutM does not 
have a lyase activity) and an 8-oxoG endonuclease 
(which does not possess a glycosylase activity), 
although the activity of the former enzyme may be 
identical to mammalian N-methylpurine-DNA- 
glycosylase. [46] In addition to its main substrate 
of N-alkylpurine, mammalian N-methylpurine- 
DNA-glycosylase removes 8-oxoG by glycosylase 
action. [531 Glycosylases, by virtue of their mecha- 
nism, result in release of the modified base. The 
action of the endonuclease reported by Bessho 
et al. [521 gives rise to 3'y,8-0xodGDP as the puta- 
tive product from modified DNA, which may 
subsequently be hydrolysed to 8-oxodG by 
nucleotidase(s). Such a mechanism would pro- 
vide one means by which DNA-derived 8-oxodG 
may appear in urine. 

NUCLEOTIDE EXCISION REPAIR (NER) 

It has been suggested that NER acts simply as a 
"back-up" system for base excision in the repair of 
oxidative lesions, [54'ss] yet in yeast, NER is 
reported to play a major role in processing oxi- 
dative DNA damage. E561 Whilst removal of these 
non-bulky lesions would appear to occur due to 
the non-specific binding of the NER recognition 
subunits to DNA, [54] the differing capacities of 
XP complementation groups to process 8-0xodG 
would suggest that more specificity is present 
than previously thought. [57'5s] Once bound, the 
recognition subunits cause conformational 
changes in the DNA at the site which, if already 
conformationally altered due to a lesion, produces 
a higher affinity interaction and a more long-lived 
complex, [591 the result of which becomes an exci- 
nuclease target. Thus a process exists in mamma- 
lian cells [6°1 whereby oxidative lesions, which 
induce conformational changes and base mis- 
matches, may be recognised and removed by 
NER. [541 Indeed, Reardon et al. [61] demonstrated 
the removal of 8-oxoG by NER to occur 1.5-fold 
faster than cis, syn cyclobutane thymine dimers 
(T<>T), the reference bulky lesion, concluding 
this to be physiologically significant. Such a find- 
ing adds, in mammalian cells, to the bacterial GO 
system described by Michaels and Miller [621 for 
preventing 8-oxoG-derived, spontaneous muta- 
genesis. Furthermore, NER would result in a 
lesion-containing oligomer, classically some 24- 
29 nucleotides in length. [63] Although again rely- 
ing on data derived from studies of T<>T, there 
exists some evidence to suggest that such excised 
oligomers rapidly become subject to 5 t ~ 3 ~ exo- 
nucleolytic attack, which the authors speculate 
may continue until the lesion is encountered, 
resulting in a 6- or 7-mer, f64] or perhaps, ulti- 
mately, the isolated lesion itself. We suggest 
that such a process would represent another 
means by which DNA-derived 8-oxodG, or 
8-oxodG-containing oligomers, may appear in 
the urine. 

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
L

ib
ra

ry
 o

f 
H

ea
lth

 S
ci

-U
ni

v 
of

 I
l o

n 
11

/2
1/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



URINARY 8-HYDROXY-2'-DEOXYGUANOSINE 385 

M I S M A T C H  REPAIR 

First demonstrated by Holmes et al. [65] and later 
characterised by McGoldrick e ta[ .  [661 MYH, 
the mammalian homologue of MutY in E. coli, 
removes the mismatched, but undamaged, ade- 
nine opposite to an 8-oxoG by a glycosylase action. 
Failure of this action would induce a G : C --* T: A 
transversion. More recently, the repertoire of this 
enzyme has been extended to include the removal 
of guanine, when mismatched opposite 8-oxoG, 
thus preventing G : C --+ C : G transversions. I671 
Removal of 8-oxoG from the parent strand is then 
performed by hOgg2. The human homologue 
of the MutY  gene (hMYH) has been cloned and 
sequenced by Slupska et al. [681 establishing, along 
with hOggl and hMTH, the human equivalent of 
the bacterial GO system. 

PREVENTION OF I N C O R P O R A T I O N  

The A-~ C mutation was shown to occur fol- 
lowing misincorporation of 8-oxodGTP, from 

the nucleotide pool, opposite dA in DNA. [69] The 
existence of a protein, 8-oxodeoxyguanosine 
triphosphatase or 8-oxo-Z-deoxyguanosine 
5~-triphosphate pyrophosphohydrolase (8-oxod- 
GTPaseI7°l), detected in human tissue, (a homo- 
logue of E. coli MutT protein, known as human 
MutT homologue, hMTH [71I) which hydrolyses 
the damaged triphosphate to the monophosphate, 
8-oxodGMP ~721 (Figure 2), assigns considerable 
importance to this mechanism for base lesion 
appearance in DNA. This is further supported 
by the finding in E. coli of another enzyme, GTP 
cyclohydrolase II, with the ability to hydrolyse 
8-oxodGTP (and 8-oxoGTP, although favouring 
the former) to their corresponding (deoxy)nucleo- 
side monophosphates. E731 Whilst 8-oxodGTP can 
arise from oxidation of dGTP and the phosphor- 
ylation of 8-oxodGDP, it cannot be generated via 
the repeated phosphorylation of 8-oxodGMP [74] 
(Figure 2). Subsequent digestion of 8-oxodGMP 
by a 5'(3')-nucleotidase (8-oxodGMPase) gener- 
ates 8-oxodG which can be transported across 
the cell membrane and excreted in the urine. [741 

8-oxo~TP? - ~  ~ 8-oxoGuo? 

2.7.4.4 2,7,4.6 2.7.7.6 ~ 
GMP ~ GDP ~ GTP ~ RN,a, 

\ 
dGDP 

8-oxodGTP 

,3',8-oxodGMP 

hMTH 1 ~5 ' (3 ' ) -nuc leo t idase  

~(8-oxodGMPase) 

Possible implications 
of oxidatively modified 

RNA? 

8-oxodG 

FIGURE 2 Illustration of how oxidative insult to the nucleotide pool may give rise to urinary 8-oxodG via the action of 
hMTH1 (human MutT homologue) (EC2.7.4.4: Nucleoside-phosphate kinase; EC2.7.4.6: Nucleoside 5'-diphosphatephos- 
photransferase; EC2.7.7.6: DNA-directed RNA polymerase; EC1.17.4.1: Ribonucleotide-diphosphate reductase). 
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386 M.S. COOKE et al. 

Given that oxidation of the free deoxynucleo- 
tide occurs more rapidly than as a paired poly- 
nucleotide, I691 it might be implied that the 
deoxynucleotide pool represents a greater source 
of 8-oxodG than DNA. Also, mitochondrial 
sources of deoxynucleotides are disproportion- 
ally large compared to the nuclear/cytosolic pool 
when corrected for corresponding DNA content 
(celhdar pool: 8.0pmol dGTP/txg cellular DNA 
versus mitochondrial pool: 18.0pmol dGTP/~tg 
cellular DNA) ~751 which, given the potential for 
elevated oxygen radical production in mitochon- 
dria, could result in significant oxidation of 
deoxynucleotides. In keeping with this, mito- 
chondrial levels of hMTH1 are reported to be 
high. [76] Equally, it may be argued that the nucleo- 
tide pool is so large that any possible modula- 
tion of 8-oxodG levels would not be seen, unless 
the technique was extremely sensitive. How- 
ever, whilst the total nucleotide pool is indeed 
likely to be large (800.8 pmol/cellI7Sj), the deoxy- 
nucleotide pool would represent only a fraction 
of this (10.8pmol/cellI751), easily influenced by 
prooxidant/antioxidant factors. It may be that 
these factors combined contribute significantly 
to urinary 8-oxodG levels, but the questions of 
their quantitative and qualitative importance 
compared to DNA, remains to be elucidated. 

It is therefore clear that, due to the potential 
for 8-oxodG to be derived from the nucleotide 
pool, urinary measurements of this lesion do not 
reflect solely excision repair of DNA, but also the 
processes which prevent incorporation of dam- 
aged deoxynucleotides during DNA synthesis 
(Figure 2). Indeed, this argument is unlikely to be 
unique for 8-oxodG, as DNA polymerase incor- 
poration of other oxidatively-modified deoxy- 
nucleotide triphosphates and their potential for 
mutation, have both been s h o w n .  [77'78] Although 
recent work has extended the substrate repertoire 
of hMTH to include oxidised dATP, [79] it is likely 
that enzymes, functionally analogous to hMTH, 
will be identified for other deoxynucleotides. 

A further possible source of urinary 8-oxodG 
may be that derived from dead cells. Lindahl E8°~ 

asserted that, as 8-oxodG cannot be produced 
from repair via a glycosylase action, its source in 
the urine is presumably due to the action of non- 
specific nucleases and phosphatases upon DNA 
released from dead cells. Such processing would 
yield free deoxynucleosides, oxidation of which 
would give rise to urinary 8-oxodG. Whilst this 
may indeed represent a contributory pathway for 
urinary 8-oxodG generated intra-cellularly prior 
to or during cell death, there is evidence to suggest 
that free deoxynucleosides are not subject to oxi- 
dative modification in the systemic circulation. [81] 

In this thorough study, Shigenaga et al. I811 dem- 
onstrated that intra-venous immunisation with 
2t-deoxyguanosine leads to rapid incorporation 
into the cellular nucleotide pools, with no 
8-oxodG production. Furthermore, oxidation of 
the trace dG quantities present in the urine was 
also shown to be insignificant. ~81~ The same 
workers showed that 8-oxodG is not generated 
from free 2'-deoxyguanosine when incubated 
with liver cytosolic enzymes or microsomal 
enzymes (cytochrome P-450), nor is 8-oxodG 
degraded in the circulation or through prolonged 
incubation in urine. E811 Therefore, whilst the 
potential exists for 8-oxodG derived from dead 
cells to contribute to urinary levels, its artefactual 
production or loss through metabolism or expo- 
sure to the circulation is insignificant, establishing 
its stability for use as a biomarker. Repair-based 
mechanisms for the generation of 8-oxodG are 
illustrated in Figure 3. 

M E T H O D O L O G Y  FOR THE 
M E A S U R E M E N T  OF 
U R I N A R Y  8-oxodG 

It is generally accepted that a consequence of 
repair is the appearance of lesions, or their deriva- 
tives, in the urine. On this basis, the development 
of assays which measure urinary levels of damage 
products would provide a non-invasive approach 
to the monitoring of in vivo repair. The technique 
of HPLC-EC, has been applied to the analysis of 
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URINARY 8-HYDROXY-Z-DEOXYGUANOSINE 387 

Urinary 
8-oxodG 

8-oxodG endonuclease 8-oxodG DNA glycosylases 

. 8-OxodGMP / J  ~t~ $ ~  8-oxoG 

~ _ _ . ~ N ~ d e ~ !  ~l~~8-oxodG'containing ~ Urinary 
8-oxodGMP ~ ~ 1 ~ ~  ohgomer ~ 8-oxodG? 

Prevention of } \ 
misincorporation / Nucleotide excision repair 

hMTH 
Urinary 

8-oxodG-containing 
oligomers 

FIGURE 3 Schematic for possible sources of urinary 8-oxodG (hOggl: human homologue of the Ogg enzyme; hMTH 
human MutT homologue). 

8-oxodG in urine. Howeve r  being a complex 
mixture  of constituents, the urine requires 
considerable prepurification, which include; 
solid-phase clean-up of the urine, [811 co lumn 
coupling, [82"831 carbon column capture [84] and 

immunoaff ini ty  clean-up. [85] The latter principle 
was extended by  Park et al. [86] using a monoclonal  
ant ibody co lumn to enrich for 8-oxodG in blood 
plasma and culture medium.  Whilst such anti- 
bodies m ay  represent  an improvement  in the 
HPLC method  for ur inary  8-oxodG measure-  
ment,  they also appear  to be a respectable alter- 
native to HPLC methodology,  [87] with good 
correlation between the two techniques (Ref. [88], 
Ochi et al.*). Urinary 8-oxodG has also been mea- 
sured by GC-MS and, a l though this has required 
extensive sample work-up  including both solid- 
phase extraction a n d / o r  HPLC prepurifica- 
tion, [89"9°] it does represent  a means  by  which 
multiple lesions may  potentially, be simulta- 
neously measured.  [911 Prel iminary analysis of 

five ur inary  oxidative DNA products ,  8-0xodG 

included,  by  GC-MS with HPLC prepurif ica- 
tion, indicated an approximate ly  constant ratio 
be tween the levels of each lesion. [9l] Such a result 
would  suppor t  suggestions that lesions other  than 
8-oxodG ma y  also be suitable ur inary  markers  
of oxidative stress. Conversely, HPLC with tan- 
d e m mass spect rometry  requires comparat ively  
little sample work-up,  whilst offering both mea- 
surement  and confi rmatory identification of 
8_oxodG. [92] 

U R I N A R Y  M E A S U R E M E N T  OF 
OXIDATIVE D A M A G E  REPAIR 
P RO D U CTS  

TG was one of the first ROS-induced DNA lesions 
to be s tudied and found  to be a significant marker  
of oxidative stress. [93] However ,  there is a 1000- 
fold greater sensitivity associated with the 
detection of 8-oxodG by HPLC with electrochem- 
ical detection, compared  to the UV detection of 

* Ochi, H., Yoshikawa, T., Cutler, R., Takeuchi, M. and Ramarathnam, N. Development of a monoclonal antibody ELISA for the 
quantification of 8-hydroxy-2'-deoxyguanosine (submitted for publication). 
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388 M.S. COOKE et al. 

TG[941and this has led to urinary measurements of 
TG being superseded by 8-oxodG. This simple 
rationale highlights a number of caveats which 
should be noted when measuring a lesion in urine 
and interpreting the results. 

Dietary Contribution 

Only a small amount of TG in urine is derived 
from the diet, [95I whereas the diet represents a 
major contributor to urinary 8-oxoG. ~s51 Measure- 
ment of the modified deoxynucleoside (thymi- 
dine glycol and 8-oxodG) appears to overcome 
this problem, although it is argued that this pre- 
vents the assay from being directly reflective of 
DNA repair. Such a view assigns considerable 
input from the deoxynucleotide pool and mini- 
mal contribution from the DNA directly. Further- 
more, it implies that 8-oxoG-generating, DNA 
repair processes are of primary quantitative 
importance. 

Levels of Lesion in Urine 

8-0xodG predominates over thymidine glycol in 
human urine. [94] Reasons for this are believed to 
include the relative instability of the TG, resulting 
in its decomposition, site-specific hydroxyl radi- 
cal formation in DNA (largely in guanine-rich 
regions) and selectivity in the occurrence or 
repair of damage. ~94J Furthermore, the stability 
of 8-0xodG allows the frozen storage of urine for 
up to one year prior to analysis. ~831 

Artefactual Oxidation 

The possibility of 8-oxodG arising from enzymatic 
or chemical oxidation of dG has been rigorously 
examined by Shigenaga et al. f81j who concluded 
that neither of these routes, nor exposure of dG to 
the systemic circulation, give rise to 8-oxodG. 

Renal Function 

Urinary levels of any oxidative lesion rely on renal 
excretion of damage products [96] and this raises 
the issue of "in which units should the lesion be 
expressed?" Whilst some groups favour expres- 
sion of urinary 8-oxodG in terms of p m o l / k g /  
24h, [83"97] others express relative to creati- 
nine. [82"98'99] Tagesson et al. Ll°°~ later suggest that 
creatinine levels co-vary with 8-0xodG indepen- 
dently of urine concentration. However, creati- 
nine is used routinely to correct for variations in 
urine concentration and also acts as an indicator 
of renal function, particularly important when 
examining urinary 8-oxodG in patient groups 
with disease. Furthermore a study by Bogdanov 
et al. [841 showed close correlation between total 
8-oxodG output per 24h and "spot" urines 
corrected for creatinine, demonstrating low 
intra-individual variability. It was subsequently 
concluded that 8-0xodG measurements of these 
"spot" urines were excellent markers in interven- 
tion studies. L841 This is supported by Poulsen 
et al., [1°11 given the caveat that the creatinine con- 
centrations are unchanged in paired experiments 
and comparable in unpaired experiments. 

A major drawback of either unit is that it 
prevents comparison of data between the "two 
schools' of thought". Other problems, associated 
with the 24 h collections, are the stringency with 
which the 24 h is timed and the logistics of collec- 
tion (large volumes of urine etc.). 

Specificity of the Technique 

A frequent criticism of antibody techniques 
relates to their specificity. In our studies (Refs. 
[88,98], Evans et al.t), we employed an antibody 
which has been thoroughly characterised. E1°21 No 
recognition of DNA or RNA bases was shown, 
whether modified or not. Whilst some recognition 
of the ribonucleoside, 8-oxoguanosine (8-oxoGuo) 
was reported, it was at a concentration at least 

tEvans, M.D., Cooke, M.S., Akil, M. and Lunec, J. Aberrant processing of 8-oxo-2'-deoxyguanosine in Systemic Lupus 
Erythematosus (Submitted). 
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URINARY 8-HYDROXY-2'-DEOXYGUANOSINE 389 

two orders higher than for 8-oxodG. The relative 
amounts  of ur inary  8-oxodG and 8-oxoGuo have 
not yet  been accurately demonst ra ted  prevent ing  
quanti tat ive comparison.  Even if this still repre- 
sents a significant contribution from RNA a n d / o r  
the nucleotide pool, it does not, as discussed 
below, preclude this as an assessment of oxidative 
stress. 

The ant ibody used in the above studies (and 
others [87"1°3-1°81) has a demonst ra ted  ability to 

detect "free", monomer ic  8-oxodG and that con- 
tained within oligomers and indeed isolated DNA 
itself*. Given that the ur inary  products  of NER 
may  be 8-oxodG-containing oligomers, the poten- 
tial of the ant ibody to detect these highlights a 
limitation of assays such as HPLC-EC and GC-MS 
which are strictly limited to monomer ic  8-oxodG, 
thereby not detecting 8-oxodG der ived f rom a 
potential ly impor tant  repair  pathway. Al though 
no li terature precedent  exists for the presence 
of 8-oxodG-containing oligomers in the urine, 
experiments  within the authors '  laboratory con- 

. 
firm the presence of ohgomers  ~ with work  to 
identify potential  lesions on-going. This ma y  also 
account, in part,  for the difference in basal levels 
of 8-oxodG noted by  enzyme-l inked immuno-  
sorbant assay (ELISA) and HPLC-EC techniques, 
the ELISA-derived values being higher (Table I). 
The HPLC-EC method  is not wi thout  analytical 

TABLE I Inter-laboratory and inter-technique com- 
parison of baseline levels of urinary 8-oxodG in 
healthy individuals, as measured by ELISA and 
HPLC-EC 

Technique 

ELISA (ng 8-oxodG/ t-IPLC-EC 
mg creatinine) (ng 8-oxodG/mg creatinine) 

20.5 + 7,5 [981 3.8 ± 1.9 
19.4 - 8.5 [871 2.2 ± 0.9 
18.61 [1°61 5.0 ± 1.1 
24.3 ± 15.2 [l°71 2.4 i 1.3 

Values are derived from those tabulated by Loft and 
Poulsen. |a09l 

difficulties, Bogdanov et al. E841 recently repor ted  
the presence of peaks which co-elute with 
8-oxodG, identified by mult i -channel  coulometric  
electrochemical detection. Despite these issues, 
within technique agreement  of levels in control 
subjects between labs appears  strong (Table I). 
Furthermore,  in longitudinal or comparat ive stud- 
ies, the significance of absolute levels is super-  
seded by the ability to detect  variation. 

Contr ibut ion  from R N A  

Whilst not an issue for TG, ur inary  levels of 
8-oxoG ma y  include a contribution from RNA, 
part icularly if mechanisms exist to maintain the 
integrity of RNA molecules.  Indeed,  damage  to 
RNA ma y  play a significant role in pa thology 
through abnormal  protein translation and defects 
in protein synthesis. I11°'mI As described above, 

contr ibution from the diet suggests that measure-  
ment  of ur inary  8-oxoG renders  this marker  
invalid. A s tudy  repor ted  by Witt et al. [H2] exam- 
ined the effects of exercise and vi tamin supple-  
mentat ion upon  oxidative damage,  as moni tored  
by  ur inary 8-oxoGuo measurement .  This is fur- 
ther suppor ted  as a suitable marker  of oxidative 
stress by  findings which show there to be a 
negligible contr ibution of ur inary  modif ied  ribo- 
nucleosides f rom the diet. Iu3'1141 Again, mea- 

surement  of the deoxynucleos ide  avoids the 
involvement  of any RNA derivatives. 

It has therefore been proposed  that ur inary  
levels of 8-oxodG can be used to non-invasively 
moni tor  in vivo oxidative s t r e s s ,  [115"116] assuming 

an appropr ia te  me thod  of analysis exists, which 
takes the above points into account. 

S I G N I F I C A N C E  OF U R I N A R Y  8-oxodG 
M E A S U R E M E N T S  

The quanti tat ion of 8-oxodG in ur ine has been 
used to assay in vivo oxidative DNA damage.  E681 

Unpublished observations. 
Manuscript in preparation. 
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390 M.S. COOKE et al. 

These workers demonstrated a correlation 
between levels of urinary 8-0xodG and species- 
specific metabolic rate and longevity, consistent 
with the hypothesis of a steady-state level of oxi- 
dative damage. Urinary 8-0xodG has also been 
examined in relation to smoking, gender and body 
mass index. Is31 The general finding, reviewed by 
Loft et al., [1171 was that metabolic rate appeared to 
be a factor accounting for inter-species and subject 
variations in 8-0xodG excretion and that smoking 
increased urinary levels of this lesion. Further- 
more, this lesion and presumably others, has been 
shown to accumulate in tissue in an age-depen- 
dent manner, perhaps due to either a decrease in 
repair/antioxidant defence efficiency ~1181 or an 
increased rate of oxidant production. I221 

It has been shown that individuals with malig- 
nant disease (affecting breast, colon, lymphoma 
and teratoma) have a significantly higher excre- 
tion of 8-0xodG compared to healthy controls, 
hypothesised to be due to increased oxidative 
damage. I82"1°°1 However, this increase may largely 
be due to the therapy which the patients are 
undergoing, El191 perhaps due to increased cell 
turnover. Elevated levels of urinary 8-0xodG and 
presumably DNA damage, as determined by 
HPLC, have been proposed as an explanation 
for the higher incidence of malignancy in patients 
with cystic fibrosis. [12°1 It is important to note that 
a rise in urinary 8-0xodG does not necessarily 
reflect more DNA damage, but can reflect a lower- 
ing or lower steady-state levels in tissue DNA, 
perhaps due to repair. [121] Thus far, few studies 
have attempted to correlate increased urinary oxi- 
dative biomarkers with disease, perhaps due to a 
possible multi-factorial explanation for elevated 
levels of oxidative stress in disease, or the draw- 
backs of analytical techniques available. In partic- 
ular, strong data for the much postulated role of 
oxidative DNA damage in carcinogenesis I1221 
remains most elusive, although observational/ 
epidemiological evidence is growing (reviewed 
by Poulsen and Loft[1231). It therefore seems 
reasonable to suggest that dietary antioxidants 
may play a role in cancer prevention, although 

Loft et al. [83] concluded that intake of antioxidants 
does not influence 8-0xodG excretion and, by 
implication, DNA damage. 

D N A  D A M A G E  A N D  A N T I O X I D A N T S  

It has been postulated that prevention of damage 
to DNA, through antioxidant pathways, is an 
important approach to the prevention of carcino- 
genesis, suggesting that supplementation with 
antioxidants may significantly decrease levels of 
damage. However, whilst epidemiological stud- 
ies suggest fruit and vegetables have protective 
effects against cancer, this may not be specifically 
due to antioxidants such as vitamins C and 
E. [124"125] Furthermore the experimental evidence 
for the benefits of antioxidant vitamins has not 
shown a consensus. Several groups have reported 
no effect of antioxidants, such as vitamin C or E, 
on oxidative DNA damage [126-1281 and yet there 

remains evidence for a profound protective 
effect.  [129-131] Such contradictory findings are 
exemplified in our recent report in which vita- 
min C supplementation displayed an apparent 
antioxidant effect, reducing 8-oxoG in lympho- 
cyte DNA with a concomitant prooxidant effect, 
increasing levels of 8-oxoA in the same sam- 
ple. [132] This novel finding, whilst surprising, 
maintained that vitamin C possesses an overall 
protective effect due to the different mutagenic 
abilities of 8-oxoG compared to 8-0xoA.  [1321 

Further work, which has suggested a possible 
explanation for this dichotomy, measured levels 
of 8-oxodG in DNA, serum and urine E981 from the 
same supplemented subjects as described by 
Podmore et al. [1321 The report described the reduc- 
tion of DNA levels of 8-oxodG, whilst serum and 
urinary levels increased significantly. Additional 
support for this observation may be derived from 
two other reports which noted an appreciable, if 
non-significant, increase in urinary 8-oxodG of 
subjects with a diet high in fruit and vegeta- 
bles [1331 and those supplemented, twice daily, 
with 250mg vitamin C. [134] Cooke et al. [98] 
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concluded by extending the adaptive response 
hypothesis of Rehmann et al. [1341 providing 
experimental evidence that vitamin C may posi- 
tively influence the repair of DNA and/or  
sanitisation of the deoxynucleotide pool. Mea- 
surement of 8-oxodG in all three biological 
matrices (DNA, serum and urine) clearly facili- 
tated such a conclusion, reiterating the impor- 
tance of 8-oxodG measurements other than in 
DNA. Example of other studies, in which dietary 
intervention modulated urinary 8-oxodG excre- 
tion, describe the reduction of urinary 8-oxodG 
levels upon a diet rich in B r u s s e l s  sprouts. [135"136] 
Although potentially due to the antioxidant con- 
tent of the Brussels sprouts, the authors postu- 
late that the reduction seen might be due to the 
induction of xenobiotic metabolism enzymes by 
phytochemicals in cruciferous vegetables, [135] the 
consequence of which is removal of oxidative 
stress-inducing agents and hence reduction of the 
steady-state level. 

There is, at present, no precedent to suggest 
what proportion of urinary 8-oxodG is derived 
from the deoxynucleotide pool or DNA. There- 
fore the increases in serum and urinary 8-oxodG 
may be derived from either source (or both). 
However, recent evidence from our laboratory 
may provide a clue. Our study, in which serum 
levels of 8-oxodG in the autoimmune disease, 
systemic lupus erythematosus (SLE), were exam- 
ined, revealed an attenuated response to vitamin 
C supplementation, compared to control subjects 
(Evans et al.ll). A reduced purine 5t-nucleotidase 
activity [1371 may account for this difference 
between the subject groups, assuming this 
enzyme acts upon modified, as well as native, 
mononucleotides. As illustrated in Figure 3, the 
purine 5t-nucleotidase is required to convert 
5~,8-oxodGMP, derived from the nucleotide 
pool, to 8-oxodG, allowing excretion of the lesion. 
Given that this is the rate limiting s tep ,  [136] w e  

speculate that processes requiring this activity 
to generate 8-oxodG could partly account for the 
quantitative differences in response between the 
SLE and control subjects. 

Given the 8-oxodG sources described in this 
review, it would be pertinent to re-examine how 
vitamin C may modulate levels of 8-oxodG in 
both DNA and urine. Cooke et al. ~981 postulated a 
number of explanations for the effects upon 8- 
oxodG following vitamin C supplementation: 

1. Vitamin C acts as a prooxidant for guanine 
moieties not contained within DNA perhaps due 
to a particular cellular localisation of vitamin C. 
The increases seen in 8-oxodG would therefore be 
derived from the nucleotide pool i.e. oxidation of 
dGTP. 

2. Equally, if vitamin C promotes the "purging" 
of 8-oxodG from the cell, again this would most 
likely come from the nucleotide pool. In the case of 
this and the above points, this would suggest that 
vitamin C is having some form of residual effect, 
detectable long after plasma values have returned 
to baseline and that it is the processing of these 
lesions which explains the delay between their 
removal and appearance in the urine. 

3. Given that DNA levels of 8-oxoG are reduced 
by vitamin C [132] this would support the, largely 
in vitro, evidence for an activity which scavenges 
radicals, [1] preventing damage to DNA. In combi- 
nation with steady-state repair, a decrease in DNA 
levels of 8-oxoG would be seen. This would not 
account for the concomitant increase in 8-oxoA. 

4. Our favoured hypothesis suggests that 
vitamin C positively influences the removal of 
8-oxodG from the DNA and/or  nucleotide pool, 
most likely, via the upregulation of repair en- 
zymes. Recent in vitro evidence from the authors' 
laboratory supports a role of vitamin C in both the 
activation of transcription factor binding and 
'8-oxodG removal (Holloway et al.¶). This may be 

II Evans, M.D., Cooke, M.S., Akil, M. and Lunec, J. Aberrant processing of 8-oxo-21-deoxyguanosine in Systemic Lupus 
Er~thematosus (Submitted). 

1Holloway. K., Cooke, M.S., Faux. S., Griffiths, H.R. and Lunec, J. (in preparation). 
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a s s o c i a t e d  w i t h  v i t a m i n  C ' s  p r o o x i d a n t / r e d o x  

p r o p e r t i e s ,  a l so  a c c o u n t i n g  for  the  i n c r e a s e  in  

D N A  leve l s  of 8 -oxoA.  

S U M M A R Y  A N D  C O N C L U S I O N S  

The  m o s t  r e p o r t e d  t e c h n i q u e  for  the  m e a s u r e m e n t  

of u r i n a r y  8 - o x o d G  is H P L C - E C ,  h o w e v e r ,  m o r e  

r ecen t ly  an  E L I S A - b a s e d  m e t h o d  has  i n c r e a s e d  in  

use .  W h i l s t  a g r e e m e n t  b e t w e e n  the  H P L C  a n d  

ELISA t e c h n i q u e s  is no t  e s t a b l i s h e d  for  b a s e l i n e  

u r i n a r y  leve ls ,  s t r o n g  a g r e e m e n t  is s een  b e t w e e n  

l a b o r a t o r i e s  u s i n g  the  s a m e  t echn ique .  L i t e r a t u r e  

r e fe rences  to u r i n a r y  8 - o x o d G  m e a s u r e m e n t s  

h a v e  c l ea r ly  i l l u s t r a t e d  the  a p p a r e n t  i n v o l v e m e n t  

of o x i d a t i v e  s t ress  in  n u m e r o u s  p a t h o l o g i c a l  con-  

d i t i ons  a n d  its g e n e r a t i o n  f o l l o w i n g  toxic  insul t .  

H o w e v e r ,  p r o o f  of  a d e f i n e d  ro le  is s t i l l  absen t .  

The  ques t ion :  " f rom w h e r e  d o e s  u r i n a r y  8 - o x o d G  

de r ive?"  is cen t ra l  to the  m e a n i n g f u l  i n t e r p r e t a -  

t ion of  r e su l t s  d e r i v e d  f r o m  the  a b o v e  a s s a y s  a n d  

an  i m p o r t a n t  p r e r e q u i s i t e  for  p r o v i n g  a d e f i n e d  

role.  This  r e v i e w  has  a d d r e s s e d  the  q u e s t i o n  of  

source ,  s u g g e s t i n g  tha t  an  e n d o n u c l e a s e  ac t ion  

a n d  N E R  m a y  y i e l d  8 - o x o d G  f rom D N A ,  w h i l s t  

the  h M T H  s y s t e m  san i t i s e s  the  n u c l e o t i d e  poo l ,  

g i v i n g  r ise  to 8 -oxodG.  F u r t h e r m o r e  cell  d e a t h /  

t u r n o v e r  e i the r  t h r o u g h  a p o p t o s i s  or  necros i s ,  

m a y  a lso  c o n t r i b u t e  to the  b a c k g r o u n d  leve ls  of 

les ion.  W i t h  the  sou rce s  i den t i f i ed ,  it  w i l l  be  

i m p o r t a n t  to k n o w  w h a t  the  r e l a t ive  c o n t r i b u t i o n  

to to ta l  u r i n a r y  8 - 0 x o d G  these  p r o c e s s e s  r e p r e s e n t  

a n d  h o w  the i r  ac t ion  m a y  be  m o d u l a t e d .  Such  a 

f i n d i n g  w o u l d  show,  in t e r m s  of ce l lu l a r  i m p o r -  

tance ,  h o w  m e a s u r e m e n t s  of  u r i n a r y  8 - o x o d G ,  as  

a m a r k e r  of  o x i d a t i v e  s t ress  c o m p a r e s  w i t h  D N A  

levels  of  8 - o x o d G  a n d  D N A  r e p a i r  capac i ty .  Sig-  

n i f i can t  w o r k  sti l l  n e e d s  to  be  p e r f o r m e d  to l ink  

m o r e  c lose ly  these  th ree  p a r a m e t e r s  a n d  h e n c e  

fu r the r  e l u c i d a t e  the  k ine t ics  of 8 - o x o d G  f o r m a -  

t ion  a n d  c l ea r ance  in vivo. U p o n  e s t a b l i s h m e n t  

of these  de ta i l s ,  u r i n a r y  8 - o x o d G  m e a s u r e m e n t s  

m a y  b e c o m e  m o r e  t h a n  a r e f l ec t ion  of g e n e r a l i s e d  

o x i d a t i v e  s t ress .  
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